Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Practical Optimization Methods
Details
This book is suitable for practicing scientists and engineers especially those using mathematica in their work.
Inhalt
1 Optimization Problem Formulation.- 1.1 Optimization Problem Formulation.- 1.2 The Standard Form of an Optimization Problem.- 1.3 Solution of Optimization Problems.- 1.4 Time Value of Money.- 1.5 Concluding Remarks.- 1.6 Problems.- 2 Graphical Optimization.- 2.1 Procedure for Graphical Optimization.- 2.2 GraphicalSolution function.- 2.3 Graphical Optimization Examples.- 2.4 Problems.- 3 Mathematical Preliminaries.- 3.1 Vectors and Matrices.- 3.2 Approximation Using the Taylor Series.- 3.3 Solution of Nonlinear Equations.- 3.4 Quadratic Forms.- 3.5 Convex Functions and Convex Optimization Problems.- 3.6 Problems.- 4 Optimality Conditions.- 4.1 Optimality Conditions for Unconstrained Problems.- 4.2 The Additive Property of Constraints.- 4.3 Karush-Kuhn-Tucker (KT) Conditions.- 4.4 Geometric Interpretation of KT Conditions.- 4.5 Sensitivity Analysis.- 4.6 Optimality Conditions for Convex Problems.- 4.7 Second-Order Sufficient Conditions.- 4.8 Lagrangian Duality.- 4.9 Problems.- 5 Unconstrained Problems.- 5.1 Descent direction.- 5.2 Line Search TechniquesStep Length Calculations.- 5.3 Unconstrained Minimization Techniques.- 5.4 Concluding Remarks.- 5.5 Problems.- 6 Linear Programming.- 6.1 The Standard LP Problem.- 6.2 Solving a Linear System of Equations.- 6.3 Basic Solutions of an LP Problem.- 6.4 The Simplex Method.- 6.5 Unusual Situations Arising During the Simplex Solution.- 6.6 Post-Optimality Analysis.- 6.7 The Revised Simplex Method.- 6.8 Sensitivity Analysis Using the Revised Simplex Method.- 6.9 Concluding Remarks.- 6.10 Problems.- 7 Interior Point Methods.- 7.1 Optimality Conditions for Standard LP.- 7.2 The Primal Affine Scaling Method.- 7.3 The Primal-Dual Interior Point Method.- 7.4 Concluding Remarks.- 7.5 AppendixNull and Range Spaces.- 7.6 Problems.-8 Quadratic Programming.- 8.1 KT Conditions for Standard QP.- 8.2 The Primal Affine Scaling Method for Convex QP.- 8.3 The Primal-Dual Method for Convex QP.- 8.4 Active Set Method.- 8.5 Active Set Method for the Dual QP Problem.- 8.6 AppendixDerivation of the Descent Direction Formula for the PAS Method.- 8.7 Problems.- 9 Constrained Nonlinear Problems.- 9.1 Normalization.- 9.2 Penalty Methods.- 9.3 Linearization of a Nonlinear Problem.- 9.4 Sequential Linear ProgrammingSLP.- 9.5 Basic Sequential Quadratic ProgrammingSQP.- 9.6 Refined SQP Methods.- 9.7 Problems.- A.1 Basic Manipulations in Mathematica.- A.2 Lists and Matrices.- A.3 Solving Equations.- A.7 Online Help.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781461267911
- Auflage Softcover reprint of the original 1st ed. 2000
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T40mm
- Jahr 2013
- EAN 9781461267911
- Format Kartonierter Einband
- ISBN 1461267919
- Veröffentlichung 19.04.2013
- Titel Practical Optimization Methods
- Autor M. Asghar Bhatti
- Untertitel With Mathematica Applications
- Gewicht 1089g
- Herausgeber Springer
- Anzahl Seiten 732