Prediction of nonlinear nonstationary time series data

CHF 86.75
Auf Lager
SKU
6458N5QJLME
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Volatility is a critical parameter when measuring the size of the errors made in modelling returns and other nonlinear nonstationary time series data. The Autoregressive Integrated Moving-Average (ARIMA) model is a linear process in time series; whilst in the nonlinear system, the Generalised Autoregressive Conditional Heteroskedasticity (GARCH) and Markov Switching GARCH (MS-GARCH) models have been widely applied. In statistical learning theory, Support Vector Regression (SVR) plays a significant role in predicting nonlinear and nonstationary time series data. The book contains a new class model comprised a combination of a novel derivative Empirical Mode Decomposition (EMD), averaging intrinsic mode function (aIMF) and a novel of multiclass SVR using mean reversion and coefficient of variance (CV) to predict financial data i.e. EUR-USD exchange rates. The novel aIMF is capable of smoothing and reducing noise, whereas the novel of multiclass SVR model can predict exchange rates.

Autorentext

Bhusana has held two Ph.D., DIC from Imperial College London in Electrical Engineering and Biomedical Engineering. He is now working as Visiting Professor at Centre for Bio-Inspired Technology, Imperial College London. Bhusana is the author of 30 papers in the nonlinear system and biomedical science and holds two international patents.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659894084
    • Genre Maths
    • Anzahl Seiten 212
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T13mm
    • Jahr 2016
    • EAN 9783659894084
    • Format Kartonierter Einband (Kt)
    • ISBN 3659894087
    • Veröffentlichung 14.06.2016
    • Titel Prediction of nonlinear nonstationary time series data
    • Autor Bhusana Premanode
    • Untertitel A Digital Filter and Support Vector Regression
    • Gewicht 334g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470