Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Prediction of nonlinear nonstationary time series data
Details
Volatility is a critical parameter when measuring the size of the errors made in modelling returns and other nonlinear nonstationary time series data. The Autoregressive Integrated Moving-Average (ARIMA) model is a linear process in time series; whilst in the nonlinear system, the Generalised Autoregressive Conditional Heteroskedasticity (GARCH) and Markov Switching GARCH (MS-GARCH) models have been widely applied. In statistical learning theory, Support Vector Regression (SVR) plays a significant role in predicting nonlinear and nonstationary time series data. The book contains a new class model comprised a combination of a novel derivative Empirical Mode Decomposition (EMD), averaging intrinsic mode function (aIMF) and a novel of multiclass SVR using mean reversion and coefficient of variance (CV) to predict financial data i.e. EUR-USD exchange rates. The novel aIMF is capable of smoothing and reducing noise, whereas the novel of multiclass SVR model can predict exchange rates.
Autorentext
Bhusana has held two Ph.D., DIC from Imperial College London in Electrical Engineering and Biomedical Engineering. He is now working as Visiting Professor at Centre for Bio-Inspired Technology, Imperial College London. Bhusana is the author of 30 papers in the nonlinear system and biomedical science and holds two international patents.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659894084
- Genre Maths
- Anzahl Seiten 212
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T13mm
- Jahr 2016
- EAN 9783659894084
- Format Kartonierter Einband (Kt)
- ISBN 3659894087
- Veröffentlichung 14.06.2016
- Titel Prediction of nonlinear nonstationary time series data
- Autor Bhusana Premanode
- Untertitel A Digital Filter and Support Vector Regression
- Gewicht 334g
- Sprache Englisch