Prediction Theory: The Case of Image Information Preserving

CHF 74.40
Auf Lager
SKU
RO0DBNON6S1
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025

Details

Data compression is based on the abstraction that data comprises two quantities. The first is the information content and the second is the redundant information. The objective of compression is to remove the redundant information and represent the data by the information content portion only, if possible. As for image signals, for example, the significance of image compression (i.e., coding) is emphasized by the enormous amount of data in raster images. For instance, a typical gray-scale image of 512×512 pixels, with each pixel represented by 8 bits, adds up to 256 kilobytes of data. Hence, removing redundancies from the image is not only highly desired but also imperative for transmission and storage requirements. Linear prediction is a mathematical process, which estimates future values of a discrete time signal as a linear function of past samples. This book focuses on employing linear prediction theory to image compression for the purpose of information preserving with a special focus on guide aided coding (GAC) method. Examples of image coding techniques that attempt to preserve image information are also presented in this book.

Autorentext

Dr. Saif alZahir received his PhD degree in EE from the University of Pittsburgh. Currently, he is with the CS Dept. at the University of N. British Columbia, Canada. He authored nearly 75 papers. He is the editor-in-chief of the International Journal on Corporate Governance and the editor-in-chief of the Signal Processing: International Journal.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 215g
    • Untertitel A Segmentation-Based Optimal Linear Predictors for Image Coding
    • Autor Saif Alzahir
    • Titel Prediction Theory: The Case of Image Information Preserving
    • Veröffentlichung 16.01.2012
    • ISBN 3847347772
    • Format Kartonierter Einband
    • EAN 9783847347774
    • Jahr 2012
    • Größe H220mm x B150mm x T9mm
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 132
    • Auflage Aufl.
    • GTIN 09783847347774

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.