Predictive Artificial Neural Networks

CHF 99.60
Auf Lager
SKU
67TNGBQ36LN
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025

Details

Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data.

Autorentext

Engr Assoc Prof Dr R.Logeswaran has been involved with ANN and data compression research and teaching for over 12 years. Qualified from the University of London and Multimedia University, receiving several scholarships including the Brain Korea 21 and Brain Gain Malaysia, he currently serves as a Deputy Dean at Multimedia University, Malaysia.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 340g
    • Untertitel A Block-adaptive Scheme for Lossless Telemetry Data Compression
    • Autor Rajasvaran Logeswaran
    • Titel Predictive Artificial Neural Networks
    • Veröffentlichung 09.01.2010
    • ISBN 3838337441
    • Format Kartonierter Einband
    • EAN 9783838337449
    • Jahr 2010
    • Größe H220mm x B150mm x T13mm
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 216
    • GTIN 09783838337449

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.