Prime Zeta Function
CHF 42.90
Auf Lager
SKU
T6G4VVIJPNT
Geliefert zwischen Fr., 26.09.2025 und Mo., 29.09.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, the Prime zeta function is an analogue of the Riemann zeta function, studied by Glaisher (1891). It is defined as the following infinite series, which converges for Re(s) 1: P(s)=sum{p,inmathrm{,primes}} frac{1}{p^s}. The Euler product for the Riemann zeta function (s) implies that logzeta(s)=sum{n0} frac{P(ns)}{n}, which by Möbius inversion gives. P(s)=sum_{n0} mu(n)frac{logzeta(ns)}{n}. This gives the continuation of P(s) to Re(s) 0, with an infinite number of logarithmic singularities at points where ns is a pole or zero of (s). The line Re(s) = 0 is a natural boundary as the singularities cluster near all points of this line.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131239564
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- EAN 9786131239564
- Format Fachbuch
- Titel Prime Zeta Function
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung