Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Principal Component Analysis
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Principal component analysis (PCA) involves a mathematical procedure that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. Depending on the field of application, it is also named the discrete Karhunen Loève transform (KLT), the Hotelling transform or proper orthogonal decomposition (POD).
Klappentext
High Quality Content by WIKIPEDIA articles! Principal component analysis (PCA) involves a mathematical procedure that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. Depending on the field of application, it is also named the discrete Karhunen-Loève transform (KLT), the Hotelling transform or proper orthogonal decomposition (POD).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130315795
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130315795
- Format Kartonierter Einband
- ISBN 978-613-0-31579-5
- Titel Principal Component Analysis
- Untertitel Karhunen-Loève Theorem, Harold Hotelling, Karl Pearson, Exploratory Data Analysis, Eigendecomposition of a Matrix, Covariance Matrix, Singular Value Decomposition, Factor Analysis
- Gewicht 136g
- Herausgeber Betascript Publishers
- Anzahl Seiten 84
- Genre Mathematik