Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Principles of Complex Analysis
Details
This is a brief textbook on complex analysis intended for the students of upper undergraduate or beginning graduate level. The author stresses the aspects of complex analysis that are most important for the student planning to study algebraic geometry and related topics. The exposition is rigorous but elementary: abstract notions are introduced only if they are really indispensable. This approach provides a motivation for the reader to digest more abstract definitions (e.g., those of sheaves or line bundles, which are not mentioned in the book) when he/she is ready for that level of abstraction indeed. In the chapter on Riemann surfaces, several key results on compact Riemann surfaces are stated and proved in the first nontrivial case, i.e. that of elliptic curves.
Conformal mappings are introduced on an early stage, so the reader can learn to manipulate with subsets of the complex plane before passing to more sophisticated subjects A special long section is devoted to evaluation of residues and evaluation of integrals using residues The final chapter, which is devoted to Riemann surfaces, provides an elementary introduction into this subject which motivates the reader to study more technical parts of the theory
Autorentext
Serge Lvovski is associate professor at the Faculty of Mathematics of Higher School of Economics, Moscow, and research fellow in the Laboratory of Algebraic Geometry and its Applications.
Inhalt
Introduction.- Preliminaries.- Derivatives of functions of complex variable.- Practicing conformal mappings.- Integrals of functions of complex variable.- Cauchy theorem and its consequences.- Homotopy and analytic continuation.- Laurent series and singular points.- Residues.- Local properties of holomorphic functions.- Conformal mappings I.- Infinite sums and products.- Conformal mappings II.- Introduction to Riemann surfaces.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030593674
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2020
- Anzahl Seiten 272
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T15mm
- Jahr 2021
- EAN 9783030593674
- Format Kartonierter Einband
- ISBN 3030593673
- Veröffentlichung 28.09.2021
- Titel Principles of Complex Analysis
- Autor Serge Lvovski
- Untertitel Moscow Lectures 6
- Gewicht 417g
- Sprache Englisch