Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Probabilistic Graphical Models
Details
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.
Includes exercises, suggestions for research projects, and example applications throughout the book Presents the main classes of PGMs under a single, unified framework Covers both the fundamental aspects and some of the latest developments in the field Includes supplementary material: sn.pub/extras
Inhalt
Part I: Fundamentals.- Introduction.- Probability Theory.- Graph Theory.- Part II: Probabilistic Models.- Bayesian Classifiers.- Hidden Markov Models.- Markov Random Fields.- Bayesian Networks: Representation and Inference.- Bayesian Networks: Learning.- Dynamic and Temporal Bayesian Networks.- Part III: Decision Models.- Decision Graphs.- Markov Decision Processes.- Part IV: Relational and Causal Models.- Relational Probabilistic Graphical Models.- Graphical Causal Models.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781447170549
- Genre Information Technology
- Auflage Softcover reprint of the original 1st edition 2015
- Lesemotiv Verstehen
- Anzahl Seiten 280
- Größe H235mm x B155mm x T15mm
- Jahr 2016
- EAN 9781447170549
- Format Kartonierter Einband
- ISBN 1447170547
- Veröffentlichung 09.10.2016
- Titel Probabilistic Graphical Models
- Autor Luis Enrique Sucar
- Untertitel Principles and Applications
- Gewicht 480g
- Herausgeber Springer London
- Sprache Englisch