Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Progress in low-dimensional chaos
Details
The field of chaotic dynamics has grown highly nonlinearly in the past few decades. Major progress occurred in traditional areas such as bifurcations, crises, basin boundaries, strengthening the mathematical foundations. New topics such as control and synchronization of chaos have emerged, addressing more practical questions. This book has a bit of both, addressing the initiates in low-dimensional chaos, from graduate students to researchers. First, we discuss the topic of phase synchronization of chaos. This phenomenon results from weak interactions between dynamical systems and found applications to neuroscience and communications. Here we focus on a competition phenomenon that occurs between signals in phase synchronization of a chaotic attractor. Second, we discuss the topic of indeterminate bifurcations. We study systems undergoing adiabatic drift that destroys an attracting periodic orbit through a saddle-node bifurcation placed on a fractal basin boundary. The fate of the system following the pre-bifurcation orbit is indeterminate; it is impossible to predict its final state past the bifurcation. We address this indeterminacy numerically and analytically.
Autorentext
Romulus Breban is a researcher at Institut Pasteur, Paris. His work focuses on the applications of mathematical models to biological systems. He has a doctoral degree from the University of Maryland, College Park with a thesis in low dimensional chaos.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 104
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 173g
- Untertitel On phase synchronization and indeterminate bifurcations
- Autor Romulus Breban
- Titel Progress in low-dimensional chaos
- Veröffentlichung 12.01.2011
- ISBN 3843371075
- Format Kartonierter Einband
- EAN 9783843371070
- Jahr 2011
- Größe H220mm x B150mm x T7mm
- GTIN 09783843371070