Prominent Feature Extraction for Sentiment Analysis

CHF 165.55
Auf Lager
SKU
1PCE20SS55G
Stock 1 Verfügbar
Geliefert zwischen Di., 11.11.2025 und Mi., 12.11.2025

Details

The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model.

Authors pay attention to the four main findings of the book :
-Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.

  • Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis.
  • The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.

    • Semantic relations among the words in thetext have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.

    Includes a novel semantic parsing scheme which may be applied to many Natural language processing tasks Provides an efficient machine learning approach for sentiment analysis Easy to understand and deployable

    Inhalt

Introduction.- Literature Survey.- Machine Learning Approach for Sentiment Analysis.- Semantic Parsing using Dependency Rules.- Sentiment Analysis using ConceptNet Ontology and Context Information.- Semantic Orientation based Approach for Sentiment Analysis.- Conclusions and FutureWork.- References.- Glossary.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319253411
    • Sprache Englisch
    • Genre Medical Books
    • Größe H241mm x B160mm x T13mm
    • Jahr 2015
    • EAN 9783319253411
    • Format Fester Einband
    • ISBN 3319253417
    • Veröffentlichung 18.12.2015
    • Titel Prominent Feature Extraction for Sentiment Analysis
    • Autor Basant Agarwal , Namita Mittal
    • Untertitel Socio-Affective Computing 2
    • Gewicht 360g
    • Herausgeber Springer
    • Anzahl Seiten 124
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470