Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Properties of Closed 3-Braids and Braid Representations of Links
Details
This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu's normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties.
Includes supplementary material: sn.pub/extras
Inhalt
- Introduction.- 2. Preliminaries, basic definitions and conventions.- 3. Xu's form and Seifert surfaces.- 4. Polynomial invariants.- 5. Positivity of 3-braid links.- 6. Studying alternating links by braid index.- 7. Applications of the representation theory.- Appendix. References.-Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319681481
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st ed. 2017
- Anzahl Seiten 110
- Herausgeber Springer-Verlag GmbH
- Größe H235mm x B155mm
- Jahr 2017
- EAN 9783319681481
- Format Kartonierter Einband
- ISBN 978-3-319-68148-1
- Veröffentlichung 08.12.2017
- Titel Properties of Closed 3-Braids and Braid Representations of Links
- Autor Alexander Stoimenow
- Untertitel SpringerBriefs in Mathematics
- Gewicht 1942g
- Sprache Englisch