Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents

CHF 85.50
Auf Lager
SKU
27CEE08KKJ8
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-NavierStokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of BochnerLebesgue spaces is not applicable. As a substitute for BochnerLebesgue spaces, variable BochnerLebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-NavierStokes equations under general assumptions. Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.


Includes the first proof of the existence of weak solutions of the unsteady p(t,x)-Navier-Stokes equations Provides a comprehensive review of the rapidly expanding field of unsteady problems with variable >exponents Requires only a basic knowledge of functional analysis

Autorentext


Inhalt

    1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable BochnerLebesgue Spaces. - 4. Solenoidal Variable BochnerLebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031296697
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2023
    • Anzahl Seiten 372
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T21mm
    • Jahr 2023
    • EAN 9783031296697
    • Format Kartonierter Einband
    • ISBN 3031296699
    • Veröffentlichung 12.08.2023
    • Titel Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents
    • Autor Alex Kaltenbach
    • Untertitel Lecture Notes in Mathematics 2329
    • Gewicht 563g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470