Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
PSO-Based Evolutionary Learning
Details
The new paradigm of Swarm Intelligence, called Particle Swarm Optimization (PSO), is one of the well-known evolutionary computation techniques, which can be considered as an efficient tool to find near optimal solution in a searching space. Especially, PSO is a useful method when the problems to be solved are high-dimensional, nonlinear or some specific information is unavailable. PSO combines the social-only model and the cognition-only model to select the adjustable parameters to approach optimal solution, its main advantage is its rapid convergence and small computational requirements, which make it a good candidate for solving optimization problems. In this book, the efficient, robust, and flexible PSO algorithms are proposed to generate some artificial intelligence system in solving some applications, such as cluster analysis, image processing, and neural network training.
Autorentext
Ching-Yi Chen received his Ph.D. degree from Tamkang University, New Taipei City, Taiwan. He joined the Department of Information and Telecommunications, Ming-Chuan University in 2007 and is now an assistant professor. His main research interests include swarm intelligence, pattern recognition, and embedded systems.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783844331530
- Genre Elektrotechnik
- Sprache Englisch
- Anzahl Seiten 156
- Größe H220mm x B150mm x T10mm
- Jahr 2011
- EAN 9783844331530
- Format Kartonierter Einband
- ISBN 3844331530
- Veröffentlichung 16.05.2011
- Titel PSO-Based Evolutionary Learning
- Autor Ching-Yi Chen
- Untertitel System Design and Applications
- Gewicht 250g
- Herausgeber LAP LAMBERT Academic Publishing