Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Pushforward (differential)
Details
High Quality Content by WIKIPEDIA articles! Suppose that : M N is a smooth map between smooth manifolds; then the differential of at a point x is, in some sense, the best linear approximation of near x. It can be viewed as generalization of the total derivative of ordinary calculus. Explicitly, it is a linear map from the tangent space of M at x to the tangent space of N at (x). Hence it can be used to push forward tangent vectors on M to tangent vectors on N. The differential of a map is also called, by various authors, the derivative or total derivative of , and is sometimes itself called the pushforward.
Klappentext
High Quality Content by WIKIPEDIA articles! Suppose that f : M N is a smooth map between smooth manifolds; then the differential of f at a point x is, in some sense, the best linear approximation of f near x. It can be viewed as generalization of the total derivative of ordinary calculus. Explicitly, it is a linear map from the tangent space of M at x to the tangent space of N at f(x). Hence it can be used to push forward tangent vectors on M to tangent vectors on N. The differential of a map f is also called, by various authors, the derivative or total derivative of f, and is sometimes itself called the pushforward.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130344276
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130344276
- Format Fachbuch
- ISBN 978-613-0-34427-6
- Titel Pushforward (differential)
- Untertitel Total Derivative, Linear Map, Tangent Space, Smooth Function, Open Set, Jacobian Matrix and Determinant
- Gewicht 149g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 88
- Genre Mathematik