Quadratic Reciprocity
CHF 46.25
Auf Lager
SKU
9PM3S3F9GBS
Geliefert zwischen Do., 09.10.2025 und Fr., 10.10.2025
Details
High Quality Content by WIKIPEDIA articles! The law of quadratic reciprocity is a theorem from modular arithmetic, a branch of number theory, which gives conditions for the solvability of quadratic equations modulo prime numbers. There are a number of equivalent statements of the theorem, which consists of two "supplements" and the reciprocity law: Let p, q 2 be two distinct (positive odd) prime numbers. Then (Supplement 1) x2 1 (mod p) is solvable if and only if p 1 (mod 4). (Supplement 2) x2 2 (mod p) is solvable if and only if p ±1 (mod 8). (Quadratic reciprocity) Let q = ±q where the sign is plus if q 1 (mod 4) and minus if q 1 (mod 4). (I.e. q = q and q 1 (mod 4).) Then x2 p (mod q) is solvable if and only if x2 q (mod p) is solvable.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130346034
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130346034
- Format Kartonierter Einband
- ISBN 978-613-0-34603-4
- Titel Quadratic Reciprocity
- Untertitel Modular Arithmetic, Number Theory, Quadratic Residue, Leonhard Euler, Adrien-Marie Legendre, Carl Friedrich Gauss, Disquisitiones Arithmeticae
- Gewicht 147g
- Herausgeber Betascript Publishers
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung