Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Quadratic Residue
Details
High Quality Content by WIKIPEDIA articles! An integer q is called a quadratic residue modulo n if it is congruent to a perfect square (mod n). Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries proved some theorems and made some conjectures about quadratic residues, but the first systematic treatment is
IV of Gauss's Disquisitiones Arithmeticae (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and states that, if the context makes it clear, the adjective "quadratic" may be dropped.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130340834
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130340834
- Format Kartonierter Einband
- ISBN 978-613-0-34083-4
- Titel Quadratic Residue
- Untertitel Integer, Modular Arithmetic, Congruence Relation, Mathematics, Number Theory, Dirichlet's Theorem on Arithmetic Progressions, Quadratic Reciprocity, Class Number Formula
- Gewicht 130g
- Herausgeber Betascript Publishers
- Anzahl Seiten 76
- Genre Mathematik