Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Quasi-Newton Least Mean Fourth Adaptive Algorithm
Details
Adaptive filtering algorithms have been proposed to improve the performance in terms of their steady- state error and convergence rate. They have also been developed to counter the effects of measurement noise. The conventional Least Mean Square (LMS) algorithm has been by far the most important in terms of its simplicity and range of applications. One of the Newton's method-based variants, the Recursive Least-Squares (RLS) is considered to be the fastest in convergence providing lower steady- state error. Thus it has been a centre point of extensive research. By comparison the Least-Mean Fourth (LMF) algorithm that gives better convergence rate in non-Gaussian noise environment has yet to evolve to its Newton's method-based variant. The aim of this work is to develop a Newton's method-based variant of the LMF algorithm. A Quasi-Newton Least- Mean Fourth (QNLMF) adaptive algorithm have been developed and analyzed. It is also compared with the RLS algorithm.
Autorentext
Umair Bin Mansoor, MS: Studied Telecommunication Engineering at King Fahd University of Petroleum and Minerals, Dhahran. Lecturer at Hafr Al-Batin Community College, Hafr Al-Batin, Saudi Arabia.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639262964
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9783639262964
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-26296-4
- Titel Quasi-Newton Least Mean Fourth Adaptive Algorithm
- Autor Umair B. Mansoor
- Untertitel Steady-State, Tracking and Transient Analysis
- Gewicht 173g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 104