Quasi-Newton Least Mean Fourth Adaptive Algorithm

CHF 61.55
Auf Lager
SKU
P6QL0FES6KC
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Adaptive filtering algorithms have been proposed to improve the performance in terms of their steady- state error and convergence rate. They have also been developed to counter the effects of measurement noise. The conventional Least Mean Square (LMS) algorithm has been by far the most important in terms of its simplicity and range of applications. One of the Newton's method-based variants, the Recursive Least-Squares (RLS) is considered to be the fastest in convergence providing lower steady- state error. Thus it has been a centre point of extensive research. By comparison the Least-Mean Fourth (LMF) algorithm that gives better convergence rate in non-Gaussian noise environment has yet to evolve to its Newton's method-based variant. The aim of this work is to develop a Newton's method-based variant of the LMF algorithm. A Quasi-Newton Least- Mean Fourth (QNLMF) adaptive algorithm have been developed and analyzed. It is also compared with the RLS algorithm.

Autorentext

Umair Bin Mansoor, MS: Studied Telecommunication Engineering at King Fahd University of Petroleum and Minerals, Dhahran. Lecturer at Hafr Al-Batin Community College, Hafr Al-Batin, Saudi Arabia.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639262964
    • Sprache Englisch
    • Genre Physik & Astronomie
    • Größe H220mm x B150mm x T6mm
    • Jahr 2010
    • EAN 9783639262964
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-26296-4
    • Titel Quasi-Newton Least Mean Fourth Adaptive Algorithm
    • Autor Umair B. Mansoor
    • Untertitel Steady-State, Tracking and Transient Analysis
    • Gewicht 173g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 104

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470