Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Radial Basis Function Network
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. A radial basis function network is an artificial neural network that uses radial basis functions as activation functions. It is a linear combination of radial basis functions. They are used in function approximation, time series prediction, and control. In a RBF network there are three types of parameters that need to be chosen to adapt the network for a particular task: the center vectors mathbf c_i, the output weights wi, and the RBF width parameters i. In the sequential training of the weights are updated at each time step as data streams in.
Klappentext
High Quality Content by WIKIPEDIA articles! A radial basis function network is an artificial neural network that uses radial basis functions as activation functions. It is a linear combination of radial basis functions. They are used in function approximation, time series prediction, and control. In a RBF network there are three types of parameters that need to be chosen to adapt the network for a particular task: the center vectors mathbf c_i, the output weights wi, and the RBF width parameters ßi. In the sequential training of the weights are updated at each time step as data streams in.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130315924
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130315924
- Format Kartonierter Einband
- ISBN 978-613-0-31592-4
- Titel Radial Basis Function Network
- Untertitel Artificial Neural Network, Radial Basis Function, Linear Combination, Function Approximation, Time Series, Control Theory, Euclidean Distance, Universal Approximation Theorem
- Herausgeber Betascript Publishers
- Anzahl Seiten 84
- Genre Mathematik