Ramanujan's Congruences
CHF 46.25
Auf Lager
SKU
AO7MIOR6NCK
Geliefert zwischen Do., 09.10.2025 und Fr., 10.10.2025
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, Ramanujan''s congruences are some remarkable congruences for the partition function p(n). The Indian mathematician Srinivasa Ramanujan discovered the following p(5k+4)equiv 0 pmod 5 p(7k+5)equiv 0 pmod 7 p(11k+6)equiv 0 pmod {11}.In his 1919 paper (Ramanujan, 1919), he gave proof for the first two congruences using the following identities (using q-Pochhammer symbol notation): sum{k=0}^infty p(5k+4)q^k=5frac{(q^5)infty^5}{(q)infty^6} sum{k=0}^infty p(7k+5)q^k=7frac{(q^7)infty^3}{(q)infty^4}+49qfrac{(q^7)infty^7}{(q)infty^8}. After Ramanujan died in 1920, G. H. Hardy, extracted proofs of all three congruences from an unpublished manuscript of Ramanujan on p(n) (Ramanujan, 1921). The proof in this manuscript employs Eisenstein series.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131365096
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131365096
- Titel Ramanujan's Congruences
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung