Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Random Ordinary Differential Equations and Their Numerical Solution
Details
Makes recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership
Develops numerical methods for random ODEs (RODEs)
Highlights important applications, with a focus on dynamical behavior and the biological sciences
Autorentext
Professor Peter E. Kloeden has wide interests in the applications of mathematical analysis, numerical analysis, stochastic analysis and dynamical systems. He is the coauthor of several influential books on nonautonomous dynamical systems, metric spaces of fuzzy sets, and in particular Numerical Solutions of Stochastic Differential equations (with E. Platen) published by Springer in 1992. Professor Kloeden is a Fellow of the Australian Mathematical Society and the Society of Industrial and Applied Mathematics. He was awarded the W.T. & Idalia Reid Prize from Society of Applied and Industrial Mathematics in 2006. His current interests focus on nonautonomous and random dynamical systems and their applications in the biological sciences. Professor Xiaoying Han's main research interests are in random and nonautonomous dynamical systems and their applications. In addition to mathematical analysis of dynamical systems, she is also interested in modeling and simulation of applied dynamical systems in biology, chemical engineering, ecology, material sciences, etc. She is the coauthor of the books Applied Nonautonomous and Random Dynamical Systems (with T. Caraballo) and Attractors under Discretisation (with P. E. Kloeden), published in the SpringerBrief series.
Inhalt
Preface.- Reading Guide.- Part I Random and Stochastic Ordinary Differential Equations.- 1.Introduction.-. 2.Random ordinary differential equations.- 3.Stochastic differential equations.- 4.Random dynamical systems.- 5.Numerical dynamics.- Part II Taylor Expansions.- 6.Taylor expansions for ODEs and SODEs.- 7.Taylor expansions for RODEs with affine noise.- 8.Taylor expansions for general RODEs.- Part III Numerical Schemes for Random Ordinary Differential Equations.- 9.Numerical methods for ODEs and SODEs.- 10.Numerical schemes: RODEs with Itô noise.- 11.Numerical schemes: affine noise.- 12.RODETaylor schemes.- 13.Numerical stability.- 14.Stochastic integrals.- Part IV Random Ordinary Differential Equations in the Life Sciences.- 15.Simulations of biological systems.- 16.Chemostat.- 17.Immune system virus model.- 18.Random Markov chains.- Part V Appendices.- A.Probability spaces.- B.Chain rule for affine RODEs.- C.Fractional Brownian motion.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811062643
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2017
- Anzahl Seiten 268
- Herausgeber Springer Nature Singapore
- Größe H241mm x B160mm x T21mm
- Jahr 2017
- EAN 9789811062643
- Format Fester Einband
- ISBN 9811062641
- Veröffentlichung 08.11.2017
- Titel Random Ordinary Differential Equations and Their Numerical Solution
- Autor Peter E. Kloeden , Xiaoying Han
- Untertitel Probability Theory and Stochastic Modelling 85
- Gewicht 571g
- Sprache Englisch