Rank of an Abelian Group

CHF 49.55
Auf Lager
SKU
6GMK2LKH2FH
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, the rank, or torsion-free rank, of an abelian group measures how large a group is in terms of how large a vector space over the rational numbers one would need to "contain" it; or alternatively how large a free abelian group it can contain as a subgroup.The rank of a finite abelian group has a different definition. (The fundamental theorem of finite abelian groups states that every finite abelian group G can be expressed as the direct sum of cyclic subgroups of prime-power order. Question: Is the rank of a finite abelian group defined as the number of these subgroups?). Members of a group are classified as torsion iff they have finite order. A group is called torsion-free iff there are no non-trivial torsion elements. Now in an abelian group, G, letting T={gin G mid exists{n{in}mathbb{N}^{+}} n{cdot}g{=}0} the set of torsion elements, we have that T is a subgroup, and so the group can be decomposed into the direct sum T oplus G/T of its torsion- and its torsion-free-components.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131368011
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131368011
    • Titel Rank of an Abelian Group
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 104
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470