Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Rankings and Preferences
Details
This book examines in detail the correlation, more precisely the weighted correlation and applications involving rankings. A general application is the evaluation of methods to predict rankings. Others involve rankings representing human preferences to infer user preferences; the use of weighted correlation with microarray data and those in the domain of time series. In this book we present new weighted correlation coefficients and new methods of weighted principal component analysis.
We also introduce new methods of dimension reduction and clustering for time series data and describe some theoretical results on the weighted correlation coefficients in separate sections.
Numerous applications help the reader to learn quickly Contains two special chapters on two very popular weighted correlation coefficients Describes an easy way of using weighted correlation with already existing statistical software Includes supplementary material: sn.pub/extras
Autorentext
Joaquim Pinto da Costa received his first degree in Applied Mathematics from Porto Universitiy (Portugal), his M. Sc. degree in Applied Statistics from Oxford University and his Ph.D. degree in Applied Mathematics from University of Rennes II (France). Since 199, he is Assistant Professor at the Mathematics Department of Porto University. His research interests include Statistics, Statistical Learning Theory, Pattern Recognition, Discriminant Analysis and Clustering, Data Analysis, Neural Networks, SVMs and Machine Learning.
Inhalt
Introduction.- The Weighted Rank Correlation Coefficient r W.- The Weighted Rank Correlation Coefficient r W2 .- A Weighted Principal Component Analysis, WPCA1: Application to Gene Expression Data.- A Weighted Principal Component Analysis (WPCA2) for Time Series Data.- Weighted Clustering of Time Series.- Appendix.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662483435
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2015
- Anzahl Seiten 104
- Herausgeber Springer Berlin Heidelberg
- Größe H235mm x B155mm x T7mm
- Jahr 2015
- EAN 9783662483435
- Format Kartonierter Einband
- ISBN 3662483432
- Veröffentlichung 25.09.2015
- Titel Rankings and Preferences
- Autor Joaquim Pinto Da Costa
- Untertitel New Results in Weighted Correlation and Weighted Principal Component Analysis with Applications
- Gewicht 172g
- Sprache Englisch