Recent Advances in Ensembles for Feature Selection

CHF 144.75
Auf Lager
SKU
IOB0OR34NHD
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance.

With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative.

The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges thatresearchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining.


Inhalt
Basic concepts.- Feature selection.- Foundations of ensemble learning.- Ensembles for feature selection.- Combination of outputs.- Evaluation of ensembles for feature selection.- Other ensemble approaches.- Applications of ensembles versus traditional approaches: experimental results.- Software tools.- Emerging Challenges.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319900797
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T18mm
    • Jahr 2018
    • EAN 9783319900797
    • Format Fester Einband
    • ISBN 331990079X
    • Veröffentlichung 14.05.2018
    • Titel Recent Advances in Ensembles for Feature Selection
    • Autor Verónica Bolón-Canedo , Amparo Alonso-Betanzos
    • Untertitel Intelligent Systems Reference Library 147
    • Gewicht 500g
    • Herausgeber Springer
    • Anzahl Seiten 220

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470