Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Recent Advances in Memetic Algorithms
Details
Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal university exam timetables, to the prediction of protein structures and the optimal design of space-craft trajectories. This monograph presents a rich state-of-the-art gallery of works on memetic algorithms. Recent Advances in Memetic Algorithms is the first book that focuses on this technology as the central topical matter. This book gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to memetic algorithms. It is a necessary read for postgraduate students and researchers interested in recent advances in search and optimization technologies based on memetic algorithms, but can also be used as complement to undergraduate textbooks on artificial intelligence.
First book focusing on memetic algorithms as the central topical matter Gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to memetic algorithms Presents a rich state-of-the-art gallery of works on memetic algorithms Includes supplementary material: sn.pub/extras
Inhalt
to Memetic Algorithms.- Memetic Evolutionary Algorithms.- Applications of Memetic Algorithms.- An Evolutionary Approach for the Maximum Diversity Problem.- Multimeme Algorithms Using Fuzzy Logic Based Memes For Protein Structure Prediction.- A Memetic Algorithm Solving the VRP, the CARP and General Routing Problems with Nodes, Edges and Arcs.- Using Memetic Algorithms for Optimal Calibration of Automotive Internal Combustion Engines.- The Co-Evolution of Memetic Algorithms for Protein Structure Prediction.- Hybrid Evolutionary Approaches to Terminal Assignment in Communications Networks.- Effective Exploration & Exploitation of the Solution Space via Memetic Algorithms for the Circuit Partition Problem.- Methodological Aspects of Memetic Algorithms.- Towards Robust Memetic Algorithms.- NK-Fitness Landscapes and Memetic Algorithms with Greedy Operators and k-opt Local Search.- Self-Assembling of Local Searchers in Memetic Algorithms.- Designing Efficient Genetic and Evolutionary Algorithm Hybrids.- The Design of Memetic Algorithms for Scheduling and Timetabling Problems.- Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects.- Related Search Technologies.- A Memetic Learning Classifier System for Describing Continuous-Valued Problem Spaces.- Angels & Mortals: A New Combinatorial Optimization Algorithm.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642061769
- Editor William E. Hart, J. E. Smith, Natalio Krasnogor
- Sprache Englisch
- Auflage Softcover reprint of hardcover 1st edition 2005
- Größe H235mm x B155mm x T23mm
- Jahr 2010
- EAN 9783642061769
- Format Kartonierter Einband
- ISBN 3642061761
- Veröffentlichung 21.10.2010
- Titel Recent Advances in Memetic Algorithms
- Untertitel Studies in Fuzziness and Soft Computing 166
- Gewicht 633g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 420
- Lesemotiv Verstehen
- Genre Mathematik