Recurrent Neural Network based Probabilistic Language Model

CHF 29.15
Auf Lager
SKU
GTA0736NBJT
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Statistical n-gram language models are widely used for their state of the art performance in a continuous speech recognition system. In a domain based scenario, the sequences vary at large for expressing same context by the speakers. But, holding all possible sequences in training corpora for estimating n-gram probabilities is practically difficult. Capturing long distance dependencies from a sequence is an important feature in language models that can provide non zero probability for a sparse sequence during recognition. A simpler back-off n-gram model has a problem of estimating the probabilities for sparse data, if the size of n gram increases. Also deducing knowledge from training patterns can help the language models to generalize on an unknown sequence or word by its linguistic properties like noun, singular or plural, novel position in a sentence. For a weaker generalization, n-gram model needs huge sizes of corpus for training. A simple recurrent neural network based language model approach is proposed here to efficiently overcome the above difficulties for domain based corpora.

Autorentext

In my beloved interest of research in robotics, I obtained my Master's degree in Intelligent Adaptive Systems from Universität Hamburg. I have good experience in Machine learning, Neural networks, Ros programming for NAO robot and image processing. I like to explore in the field of decision making from knowledge processing.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786202205443
    • Herausgeber AV Akademikerverlag
    • Anzahl Seiten 60
    • Genre IT Encyclopedias
    • Gewicht 107g
    • Untertitel Speech Recognition with Probabilistic Language Model
    • Größe H220mm x B150mm x T4mm
    • Jahr 2017
    • EAN 9786202205443
    • Format Kartonierter Einband
    • ISBN 620220544X
    • Veröffentlichung 25.10.2017
    • Titel Recurrent Neural Network based Probabilistic Language Model
    • Autor Sathyanarayanan Kuppusami
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470