Reduced Order Methods for Modeling and Computational Reduction

CHF 132.75
Auf Lager
SKU
BTTC5HD4SMB
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book details advances and developments in reduced order methods for modeling and computational reduction of complex parametrized systems held by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques.


This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects.This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

A complete review on the state of the art of model order reduction advances and developments A gallery of application examples on reduced order modeling in computational science and engineering It covers several topics and techniques by leading experts Includes supplementary material: sn.pub/extras

Inhalt
1 W. H. A. Schilders, A. Lutowska: A novel approach to model order reduction for coupled multiphysics problems.- 2 A. C. Ionita, A. C. Antoulas: Case study. Parametrized Reduction using Reduced-Basis and the Loewner Framework.- 3 M. Bebendorf, Y. Maday, B. Stamm: Comparison of some reduced representation approximations.- 4 H. Antil, M. Heinkenschloss, D. C. Sorensen: Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric System.- 5 K. Urban, S. Volkwein, O. Zeeb: Greedy Sampling using Nonlinear Optimization.- 6 P. Benner, L. Feng: A Robust Algorithm for Parametric Model Order Reduction based on Implicit Moment Matching.- 7 F. Chen, J. S. Hesthaven, X. Zhu: On the use of reduced basis methods to accelerate and stabilize the Parareal method.- 8 C. Farhat, D. Amsallem: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms.- 9 T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives.- 10 L. Grinberg, M. Deng, A. Yakhot, G. Karniadakis: Window Proper Orthogonal Decomposition. Application to Continuum and Atomistic Data.- 11 M. Bergmann, T. Colin, A. Iollo, D. Lombardi, O. Saut, H. Telib: Reduced order models at work in Aeronautics and Medicine.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319020891
    • Editor Gianluigi Rozza, Alfio Quarteroni
    • Sprache Englisch
    • Auflage 2014
    • Größe H241mm x B160mm x T25mm
    • Jahr 2013
    • EAN 9783319020891
    • Format Fester Einband
    • ISBN 3319020897
    • Veröffentlichung 12.12.2013
    • Titel Reduced Order Methods for Modeling and Computational Reduction
    • Untertitel MS&A 8, MS&A 9
    • Gewicht 688g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 348
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470