Regularity Techniques for Elliptic PDEs and the Fractional Laplacian

CHF 208.40
Auf Lager
SKU
IEENECJDA1Q
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian.


Regularity Techniques for Elliptic PDEs and the Fractional Laplacian presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian. The emphasis is placed on ideas and the development of intuition, while at the same time being completely rigorous. The reader should keep in mind that this text is about how analysis can be applied to regularity estimates. Many methods are nonlinear in nature, but the focus is on linear equations without lower order terms, thus avoiding bulky computations. The philosophy underpinning the book is that ideas must be ushed out in the cleanest and simplest ways, showing all the details and always maintaining rigor.

Features

  • Self-contained treatment of the topic
  • Bridges the gap between upper undergraduate textbooks and advanced monographs to offer a useful, accessible reference for students and researchers.
  • Replete with useful references.

    Autorentext

    Pablo Raúl Stinga earned his Licenciatura en Ciencias Matemáticas degree at Universidad Nacional de San Luis, in San Luis, Argentina (2005). He earned his Máster en Matemáticas y Aplicaciones (2007), and his Doctorado en Matemáticas Doctor Europeus under the direction of José L.Torrea at Universidad Aut noma de Madrid, Spain (2010). He held postdoctoral research positions at Universidad de Zaragoza, Spain (2010) and Universidad de La Rioja, Spain (2011-2012). During the period 2012-2015, he was the R.H. Bing Fellow in Mathematics No.1 Instructor at the University of Texas at Austin, USA, where he worked as a postdoctoral researcher under the supervision of Luis A. Caffarelli. He is currently Associate Professor at Iowa State University, USA. His research interests are in analysis, partial differential equations and nonlocal fractional equations.

    Inhalt

    1. Introduction.
    1.1. Divergence Form Equations. 1.2. Nondivergence Form Equations. 1.3. Nonlocal Equations: The Fractional Laplacian. Section I. The Laplacian. 2. Harmonic Functions. 2.1. Definition and Examples. 2.2. The Mean Value Property and Smoothness. 2.3. Consequences of the Mean Value Property. 3. The Schauder estimates for the Laplacian. 3.1. Review of Fourier Transform. 3.2. The Poisson Equation: Ideas of the Method. 3.3. The Classical Heat Semigroup. 3.4. The Fundamental Solution of the Laplacian. 3.5. Solvability of the Poisson Equation. 3.6. Schauder Estimates by Representation Formulas. 3.7. Schauder Estimates by the Method of Maximum Principle. 4. The Calder n-Zygmund estimates for the Laplacian. 4.1. Solvability with L*p Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. *II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L . 5.3. L Implies C : De Giorgi's Geometric Proof. 5.4. L Implies C : Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L Estimate for Supersolutions. 9.3. Subsolutions in Weak-L are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem.* 14.1. The Extension Problem for ( )1/2 . 14.2. The Extension Problem for ( )s* . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781032679440
    • Genre Maths
    • Anzahl Seiten 318
    • Herausgeber Chapman and Hall/CRC
    • Größe H254mm x B178mm
    • Jahr 2024
    • EAN 9781032679440
    • Format Fester Einband
    • ISBN 978-1-03-267944-0
    • Veröffentlichung 21.06.2024
    • Titel Regularity Techniques for Elliptic PDEs and the Fractional Laplacian
    • Autor Pablo Raúl Stinga
    • Gewicht 453g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470