Reinforcement Learning, Logic and Evolutionary Computation

CHF 97.55
Auf Lager
SKU
9QGVAT0FJ2J
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

Reinforcement learning (RL) consists of methods that automatically adjust behaviour based on numerical rewards and penalties. While use of the attribute-value framework is widespread in RL, it has limited expressive power. Logic languages, such as first-order logic, provide a more expressive framework, and their use in RL has led to the field of relational RL. This thesis develops a system for relational RL based on learning classifier systems (LCS). In brief, the system generates, evolves, and evaluates a population of condition-action rules, which take the form of definite clauses over first-order logic. Adopting the LCS approach allows the resulting system to integrate several desirable qualities: model-free and "tabula rasa" learning; a Markov Decision Process problem model; and importantly, support for variables as a principal mechanism for generalisation. The utility of variables is demonstrated by the system's ability to learn genuinely scalable behaviour - behaviour learnt in small environments that translates to arbitrary large versions of the environment without the need for retraining.

Autorentext

Drew Mellor completed his PhD in Computer Science at theUniversity of Newcastle, Australia. He is currently a ResearchAssociate at the Centre for Bioinformatics, Biomarker Discoveryand Information-Based Medicine, Newcastle. His interests centre on simulation and prediction of complex, natural systems through computational methods.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 453g
    • Untertitel A Learning Classifier System Approach to Relational Reinforcement Learning
    • Autor Drew Mellor
    • Titel Reinforcement Learning, Logic and Evolutionary Computation
    • Veröffentlichung 15.05.2010
    • ISBN 383830196X
    • Format Kartonierter Einband
    • EAN 9783838301969
    • Jahr 2010
    • Größe H220mm x B150mm x T19mm
    • Anzahl Seiten 292
    • GTIN 09783838301969

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470