Representation Theory of Diffeomorphism Groups

CHF 39.60
Auf Lager
SKU
BVOIK3NVTMV
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a source for the representation theory of the group of diffeomorphisms of a smooth manifold M is the initial observation that (for M connected) that group acts transitively on M. A survey paper from 1975 of the subject by Anatoly Vershik, Israel Gelfand and M. I. Graev attributes the original interest in the topic to research in theoretical physics of the local current algebra, in the preceding years. Research on the finite configuration representations was in papers of R. S. Ismagilov (1971), and A. A. Kirillov (1974). The representations of interest in physics are described as a cross product C?(M)·Diff(M). We know the reps of SL(n, R) are simply tensors over n dimensions. How about the R+ part? That corresponds to the density, or in other words, how the tensor rescales under the determinant of the Jacobian of the diffeomorphism at x. (Think of it as the conformal weight if you will, except that there is no conformal structure here). (Incidentally, there is nothing preventing us from having a complex density).

Klappentext

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a source for the representation theory of the group of diffeomorphisms of a smooth manifold M is the initial observation that (for M connected) that group acts transitively on M. A survey paper from 1975 of the subject by Anatoly Vershik, Israel Gelfand and M. I. Graev attributes the original interest in the topic to research in theoretical physics of the local current algebra, in the preceding years. Research on the finite configuration representations was in papers of R. S. Ismagilov (1971), and A. A. Kirillov (1974). The representations of interest in physics are described as a cross product C8(M)·Diff(M). We know the reps of SL(n, R) are simply tensors over n dimensions. How about the R+ part? That corresponds to the density, or in other words, how the tensor rescales under the determinant of the Jacobian of the diffeomorphism at x. (Think of it as the conformal weight if you will, except that there is no conformal structure here). (Incidentally, there is nothing preventing us from having a complex density).

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130360054
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T4mm
    • Jahr 2010
    • EAN 9786130360054
    • Format Fachbuch
    • ISBN 978-613-0-36005-4
    • Titel Representation Theory of Diffeomorphism Groups
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.