Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Riemannian Geometry
Details
This comprehensive introduction to Riemannian Geometry offers a detailed and engaging account of the topic, plus numerous exercises and examples. It combines both the geometric parts of Riemannian geometry and the analytic aspects of the theory, and reviews the latest research.
Designed for a one year introductory course, this volume introduces students to the important techniques and theorems of Riemannian geometry, while presenting sufficient background on advanced topics to appeal to students who wish to specialize in the discipline. The text combines both the geometric parts of Riemannian geometry and the analytic aspects of the theory, and presents the most up-to-date research. The updated second edition includes such new material as: A completely new coordinate-free formula that is easily remembered, and is, in fact, the Koszul formula in disguise; an expanded number of coordinate calculations of connection and curvature; general fomulas for curvature on Lie Groups and submersions; variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgotten proof by Berger; several recent results regarding manifolds with positive curvature.
Several theorems presented here appear for the first time in textbook form Comprehensive introduction to Riemannian Geometry Detailed and motivated description of the topic Numerous exercises and examples Includes supplementary material: sn.pub/extras
Inhalt
Riemannian Metrics.- Curvature.- Examples.- Hypersurfaces.- Geodesics and Distance.- Sectional Curvature Comparison I.- The Bochner Technique.- Symmetric Spaces and Holonomy.- Ricci Curvature Comparison.- Convergence.- Sectional Curvature Comparison II.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 424
- Herausgeber Springer New York
- Gewicht 639g
- Untertitel Graduate Texts in Mathematics 171
- Autor Peter Petersen
- Titel Riemannian Geometry
- Veröffentlichung 23.11.2010
- ISBN 1441921230
- Format Kartonierter Einband
- EAN 9781441921239
- Jahr 2010
- Größe H235mm x B155mm x T23mm
- Lesemotiv Verstehen
- Auflage Softcover reprint of hardcover 2nd edition 2006
- GTIN 09781441921239