Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Rings Close to Regular
Details
Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
From the reviews:
"This is the first monograph on rings close to von Neumann regular rings. The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography." (Xue Weimin, Zentralblatt MATH, Vol. 1120 (22), 2007)
Autorentext
Askar Tuganbaev received his Ph.D. at the Moscow State University in 1978 and has been a professor at Moscow Power Engineering Institute (Technological University) since 1978. He is the author of three other monographs on ring theory and has written numerous articles on ring theory.
Inhalt
1 Some Basic Facts of Ring Theory.- 2 Regular and Strongly Regular Rings.- 3 Rings of Bounded Index and I0-rings.- 4 Semiregular and Weakly Regular Rings.- 5 Max Rings and ?-regular Rings.- 6 Exchange Rings and Modules.- 7 Separative Exchange Rings.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 368
- Herausgeber Springer Netherlands
- Gewicht 557g
- Untertitel Mathematics and Its Applications 545
- Autor A. A. Tuganbaev
- Titel Rings Close to Regular
- Veröffentlichung 09.12.2010
- ISBN 9048161169
- Format Kartonierter Einband
- EAN 9789048161164
- Jahr 2010
- Größe H235mm x B155mm x T20mm
- Lesemotiv Verstehen
- Auflage Softcover reprint of hardcover 1st edition 2002
- GTIN 09789048161164