Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Robust Recognition via Information Theoretic Learning
Details
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.
The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- M-estimators and Half-quadratic Minimization.- Information Measures.- Correntropy and Linear Representation.- 1 Regularized Correntropy.- Correntropy with Nonnegative Constraint.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319074153
- Auflage 2014
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T8mm
- Jahr 2014
- EAN 9783319074153
- Format Kartonierter Einband
- ISBN 3319074156
- Veröffentlichung 09.09.2014
- Titel Robust Recognition via Information Theoretic Learning
- Autor Ran He , Liang Wang , Xiaotong Yuan , Baogang Hu
- Untertitel SpringerBriefs in Computer Science
- Gewicht 201g
- Herausgeber Springer International Publishing
- Anzahl Seiten 124
- Lesemotiv Verstehen