Robust Recognition via Information Theoretic Learning

CHF 67.15
Auf Lager
SKU
FOBA9I449FM
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.

The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.


Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- M-estimators and Half-quadratic Minimization.- Information Measures.- Correntropy and Linear Representation.- 1 Regularized Correntropy.- Correntropy with Nonnegative Constraint.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319074153
    • Auflage 2014
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T8mm
    • Jahr 2014
    • EAN 9783319074153
    • Format Kartonierter Einband
    • ISBN 3319074156
    • Veröffentlichung 09.09.2014
    • Titel Robust Recognition via Information Theoretic Learning
    • Autor Ran He , Liang Wang , Xiaotong Yuan , Baogang Hu
    • Untertitel SpringerBriefs in Computer Science
    • Gewicht 201g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 124
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470