Robust Regression Methods for Insurance Risk Classification

CHF 57.55
Auf Lager
SKU
1RH3TF6CDEN
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Risk classification is an important actuarial process for Insurance companies. It allows for the underwriting of the best risks, through an appropriate choice of classification variables, and helps set fair premiums in rate-making. Currently, insurance companies mainly use ad-hoc methods for risk classification, more often based on the type of expenses covered than on the distribution of the corresponding losses. The selection of classification variables is also, in general, based on rate-making variables rather than on an optimal choice criteria based on statistical methods. It is known that logistic regression is among the many sophisticated statistical methods used by the banking industry in order to select credit rating variables. Extending the method to insurance risks seems only natural. Insurance risks are not usually classified in only two categories, good and bad, as can be the case in credit rating, but in a larger number of classes. Here we consider the generalization of the model to extend the use of logistic regression to insurance risk classification.

Autorentext

completed a Ph.D. degree in Actuarial Mathematics at the Concordia University in 2002. He has been a faculty member of universities in Chile, Canada and Mexico since 1991, where he has developed teaching and research in statistics, risk and insurance. He has also been involved in actuarial practice and financial advisor.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783838399287
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2010
    • EAN 9783838399287
    • Format Kartonierter Einband
    • ISBN 3838399285
    • Veröffentlichung 20.10.2010
    • Titel Robust Regression Methods for Insurance Risk Classification
    • Autor Esteban Flores
    • Untertitel Robust Methods Using Multinomial Logistic Risk Insurance
    • Gewicht 191g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 116
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470