Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Robust Representation for Data Analytics
Details
This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Enriches understanding of robust feature representations Explains how to develop robust data mining models Reinforces robust representation principles with real-world practice
Inhalt
Introduction.- Fundamentals of Robust Representations.- Part 1: Robust Representation Models.- Robust Graph Construction.- Robust Subspace Learning.- Robust Multi-View Subspace Learning.- Part 11: Applications.- Robust Representations for Collaborative Filtering.- Robust Representations for Response Prediction.- Robust Representations for Outlier Detection.- Robust Representations for Person Re-Identification.- Robust Representations for Community Detection.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319601755
- Genre Information Technology
- Auflage 1st edition 2017
- Lesemotiv Verstehen
- Anzahl Seiten 236
- Größe H241mm x B160mm x T18mm
- Jahr 2017
- EAN 9783319601755
- Format Fester Einband
- ISBN 331960175X
- Veröffentlichung 29.08.2017
- Titel Robust Representation for Data Analytics
- Autor Yun Fu , Sheng Li
- Untertitel Models and Applications
- Gewicht 567g
- Herausgeber Springer International Publishing
- Sprache Englisch