Robust Speech Recognition of Uncertain or Missing Data

CHF 144.75
Auf Lager
SKU
JU3UV9UDGA5
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition.

Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition.The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.

Scientists and researchers in the field of speech recognition will find an overview of the state of the art in robust speech recognition. Professionals working in speech recognition will find strategies for improving results in various conditions of mismatch. The contributing authors are among the leading researchers in this field.

Autorentext

Prof. Dr.-Ing. Dorothea Kolossa is a professor at the Institut für Kommunikationsakustik of the Ruhr-Universität Bochum, Germany; her research interests are automatic speech recognition, digital speech signal processing, and blind source separation.

Prof. Dr.-Ing. Reinhold Haeb-Umbach heads the Dept. of Communications Engineering of the University of Paderborn, Germany; his research interest are speech signal processing and automatic speech recognition, statistical learning and pattern recognition, and signal processing for digital communications.

Inhalt
Chap. 1 Introduction.- Part I Theoretical Foundations.- Chap. 2 Uncertainty Decoding and Conditional Bayesian Estimation.- Chap. 3 Uncertainty Propagation.- Part II Applications.- Chap. 4 Front-End, Back-End, and Hybrid Techniques for Noise-Robust Speech Recognition.- Chap. 5 Model-Based Approaches to Handling Uncertainty.- Chap. 6 Reconstructing Noise-Corrupted Spectrographic Components for Robust Speech Recognition.- Chap. 7 Automatic Speech Recognition Using Missing Data Techniques: Handling of Real-World Data.- Chap. 8 Conditional Bayesian Estimation Employing a Phase-Sensitive Estimation Model for Noise-Robust Speech Recognition.- Part III Reverberation Robustness.- Chap. 9 Variance Compensation for Recognition of Reverberant Speech with Dereverberation Processing.- Chap. 10 A Model-Based Approach to Joint Compensation of Noise and Reverberation for Speech Recognition.- Part IV Applications: Multiple Speakers and Modalities.- Chap. 11 Evidence Modelling for Missing Data Speech Recognition Using Small Microphone Arrays.- Chap. 12 Recognition of Multiple Speech Sources Using ICA.- Chap. 13 Use of Missing and Unreliable Data for Audiovisual Speech Recognition.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642438684
    • Genre Elektrotechnik
    • Auflage 2011
    • Editor Reinhold Haeb-Umbach, Dorothea Kolossa
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 400
    • Größe H235mm x B155mm x T22mm
    • Jahr 2014
    • EAN 9783642438684
    • Format Kartonierter Einband
    • ISBN 3642438687
    • Veröffentlichung 12.11.2014
    • Titel Robust Speech Recognition of Uncertain or Missing Data
    • Untertitel Theory and Applications
    • Gewicht 604g
    • Herausgeber Springer Berlin Heidelberg

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470