Robust Statistics Over Riemannian Manifolds

CHF 68.75
Auf Lager
SKU
F3UDJOMCNV2
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The nonlinear nature of many vision tasks involves analysis over nonlinear spaces embedded in higher dimensional Euclidean spaces. Such manifolds can be studied using the theory of differential geometry. Here we develop two algorithms which can be applied over manifolds. The nonlinear mean shift algorithm is a generalization of the popular mean shift, a feature space analysis method for vector spaces. Nonlinear mean shift can be applied to any Riemannian manifold and is provably convergent to the local maxima of an appropriate kernel density. This algorithm is used for motion segmentation with different motion models and for the filtering of complex image data. The projection based M-estimator is a robust regression algorithm which does not require a user supplied estimate of the level of noise corrupting the inliers. We build on the connections between kernel density estimation and M-estimators to develop data driven rules for scale estimation. The method can be generalized to handle heteroscedastic data and subspace estimation. The results of using pbM for affine motion estimation, fundamental matrix estimation and multibody factorization are presented.

Autorentext

Dr.Subbarao has a B.Tech degree from the Indian Institute of Technology, Delhi in Electrical engineering and a PhD from Rutgers University in Computer Engineering. Peter Meer is currently a professor of Electrical and Computer Engineering at Rutgers University.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783843388085
    • Sprache Englisch
    • Größe H220mm x B150mm x T8mm
    • Jahr 2011
    • EAN 9783843388085
    • Format Kartonierter Einband
    • ISBN 3843388083
    • Veröffentlichung 14.02.2011
    • Titel Robust Statistics Over Riemannian Manifolds
    • Autor Raghav Subbarao , Peter Meer
    • Untertitel Applications in Computer Vision
    • Gewicht 215g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 132
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470