Scalar Conservation Laws

CHF 79.05
Auf Lager
SKU
1I03646IA9U
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book are notes prepared for the PhD courses that the author has been teaching during the last 10 years. The material available in the already existing literature (papers and essays) has been collected in this unique text, presenting the results with all the details for the reader's convenience, fixing a unified notation, and providing a consistent framework for the subject. These notes cover many of the arguments that usually can be found in high level essays, where the proofs are simply sketched, and in papers, which are not easily available and not always self-contained.
This book is intended for1. PhD students in Mathematics, Physics and Mechanical Engineering in order to learn the basic features of nonlinear scalar equations,2. researchers interested in nonlinear hyperbolic PDEs in order to learn the details behind some known and deep results on nonlinear scalar equations,3. teachers of courses on nonlinear PDEs.The readers are expected to know the basic measure theory and Sobolev spaces.

provides completely detailed proofs that allows reader to follow all the arguments line by line presents some topics from papers and essays with elegant proofs which makes them easier to understand fixes a unified notation and provides a consistent framework for the subject

Autorentext

Dr. Giuseppe Maria Coclite, Full Professor in Mathematical Analysis at the Department of Mechanics, Mathematics and Management of the Polytechnic University of Bari (Italy). His main research interests are Boundary Controllability for Systems of Conservation Laws, Traffic Models, Parabolic equations, Conservation laws with discontinuous flows, Nonlocal models in continuum mechanics, optimization in measure spaces, etc.


Inhalt

Chapter 1 Introduction.- Chapter 2 Entropy Solutions.- Chapter 3 Riemann Problem.- Chapter 4 Functions with Bounded Variation.- Chapter 5 Wave Front Tracking.- Chapter 6 Vanishing Viscosity.- Chapter 7 Compensated Compactness.- Chapter 8 Periodic solutions.- Chapter 9 Oleinik Estimate.- Chapter 10 Lax-Oleinik Formula.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819739837
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 2024
    • Anzahl Seiten 164
    • Herausgeber Springer Nature Singapore
    • Größe H235mm x B155mm x T10mm
    • Jahr 2024
    • EAN 9789819739837
    • Format Kartonierter Einband
    • ISBN 9819739837
    • Veröffentlichung 11.07.2024
    • Titel Scalar Conservation Laws
    • Autor Giuseppe Maria Coclite
    • Untertitel SpringerBriefs in Mathematics
    • Gewicht 260g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470