Scholz Conjecture

CHF 43.15
Auf Lager
SKU
RTJFMQ11GQ3
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the Scholz conjecture (sometimes called the Scholz-Brauer conjecture or the Brauer-Scholz conjecture) is a conjecture from 1937 stating that l(2n 1) n 1 + l(n) where l(n) is the length of the shortest addition chain producing n. It has been proved for many cases, but in general remains open. As an example, l(5)=3 (since 1+1=2, 2+2=4, 4+1=5, and there is no shorter chain) and l(31)=7 (since 1+1=2, 2+1=3, 3+3=6, 6+6=12, 12+12=24, 24+6=30, 30+1=31, and there is no shorter chain), so l(25 1) = 5 1+l(5). Simple number-theoretic investigation into the nature of the addition chain and the binary representation of a number allows us to prove this weaker inequality: l(2n 1) 2n 2. A proof reducing one of the ns to an l(n) has yet to be found.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131158698
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131158698
    • Format Fachbuch
    • Titel Scholz Conjecture
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470