Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Schubert Calculus and Its Applications in Combinatorics and Representation Theory
Details
This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 610, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way.
The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
Showcases the latest advances of the major topics in Schubert Calculus Provides an overview of the emerging trends in Schubert Calculus Includes world-leading researchers in Schubert Calculus
Inhalt
T. Matsumura, S. Sugimoto, Factorial Flagged Grothendieck Polynomials.- L. Darondeau and P. Pragacz, Flag Bundles, Segre Polynomials, and Push-Forwards.- W. Domitrz, P. Mormul and P. Pragacz, Order of tangency between manifolds.- H. Duan and X. Zhao, On Schubert's Problem of Characteristics.- O. Pechenik and D. Searles, Asymmetric Function Theory.- D. Anderson and A. Nigro, Minuscule Schubert Calculus and the Geometric Satake Correspondence.- F. McGlade, A. Ram and Y. Yang, Positive level, negative level and level zero.- C. su and C. Zhong, Stable Bases of the Springer Resolution and Representation Theory.- L. M. Fehér, R. Rimányi and A. Weber, Characteristic Classes of Orbit Stratifications, the Axiomatic Approach.- H. Abe and T. Horiguchi, A Survey of Recent Developments on Hessenberg Varieties.- T. Hudson, T. Matsumura and N. Perrin, Stability of BottSamelson Classes in Algebraic Cobordism.- B. Kim, J. Oh, K. Ueda, and Y. Yoshida, ResidueMirror Symmetry for Grassmannians.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811574535
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2020
- Editor Jianxun Hu, Leonardo C. Mihalcea, Changzheng Li
- Anzahl Seiten 376
- Herausgeber Springer Nature Singapore
- Größe H235mm x B155mm x T21mm
- Jahr 2021
- EAN 9789811574535
- Format Kartonierter Einband
- ISBN 9811574537
- Veröffentlichung 26.10.2021
- Titel Schubert Calculus and Its Applications in Combinatorics and Representation Theory
- Untertitel Guangzhou, China, November 2017
- Gewicht 569g
- Sprache Englisch