Schur Polynomial
CHF 49.30
Auf Lager
SKU
IRD32TK3R2C
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in n variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur functions can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood-Richardson rule. More generally, skew Schur polynomials are associated to pairs of partitions and have similar properties to Schur polynomials.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131173035
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131173035
- Format Fachbuch
- Titel Schur Polynomial
- Herausgeber Betascript Publishing
- Anzahl Seiten 104
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung