Schwinger Function

CHF 36.60
Auf Lager
SKU
JR8EALAG4V5
Stock 1 Verfügbar
Geliefert zwischen Do., 25.09.2025 und Fr., 26.09.2025

Details

High Quality Content by WIKIPEDIA articles! In quantum field theory, the Wightman distributions can be analytically continued to analytic functions in Euclidean space with the domain restricted to the ordered set of points in Euclidean space with no coinciding points. These functions are called the Schwinger functions, named after Julian Schwinger, and they are analytic, symmetric under the permutation of arguments, Euclidean covariant and satisfy a property known as reflection positivity. Pick any arbitrary coordinate and pick a test function fN with N points as its arguments. Assume fN has its support in the "time-ordered" subset of N points with 0 1 ... N. Choose one such fN for each positive N, with the f's being zero for all N larger than some integer M. Given a point x, let scriptstyle bar{x} be the reflected point about the = 0 hyperplane. Then,
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131164033
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Genre Mathematik
    • EAN 9786131164033
    • Format Fachbuch
    • Titel Schwinger Function
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 68

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.