Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sensitivity Analysis for Neural Networks
Details
This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perception neural networks and radial basis function neural networks.
Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters.
This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.
Inhalt
to Neural Networks.- Principles of Sensitivity Analysis.- Hyper-Rectangle Model.- Sensitivity Analysis with Parameterized Activation Function.- Localized Generalization Error Model.- Critical Vector Learning for RBF Networks.- Sensitivity Analysis of Prior Knowledge1.- Applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642261398
- Sprache Englisch
- Auflage 2010
- Größe H235mm x B155mm x T6mm
- Jahr 2012
- EAN 9783642261398
- Format Kartonierter Einband
- ISBN 3642261396
- Veröffentlichung 14.03.2012
- Titel Sensitivity Analysis for Neural Networks
- Autor Daniel S. Yeung , Wing W. Y. Ng , Daming Shi , Ian Cloete
- Untertitel Natural Computing Series
- Gewicht 160g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 96
- Lesemotiv Verstehen
- Genre Informatik