Separating Information Maximum Likelihood Method for High-Frequency Financial Data

CHF 95.15
Auf Lager
SKU
CFPM9V2NIHV
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book presents a systematic explanation of the SIML (Separating Information Maximum Likelihood) method, a new approach to financial econometrics.
Considerable interest has been given to the estimation problem of integrated volatility and covariance by using high-frequency financial data. Although several new statistical estimation procedures have been proposed, each method has some desirable properties along with some shortcomings that call for improvement. For estimating integrated volatility, covariance, and the related statistics by using high-frequency financial data, the SIML method has been developed by Kunitomo and Sato to deal with possible micro-market noises.
The authors show that the SIML estimator has reasonable finite sample properties as well as asymptotic properties in the standard cases. It is also shown that the SIML estimator has robust properties in the sense that it is consistent and asymptotically normal in the stable convergence sense when there are micro-market noises, micro-market (non-linear) adjustments, and round-off errors with the underlying (continuous time) stochastic process. Simulation results are reported in a systematic way as are some applications of the SIML method to the Nikkei-225 index, derived from the major stock index in Japan and the Japanese financial sector.


Gives a systematic treatment of SIML (Separating Information Maximum Likelihood) method in financial econometrics Discusses a robust estimation method for integrated volatility, covariance, and hedging coefficient by using high-frequency financial data Includes applications to high-frequency financial data in Japan

Autorentext
Naoto Kunitomo, Meiji University

Seisho Sato, The University of Tokyo

Daisuke Kurisu, Tokyo Institute of Technology

Inhalt

  1. Introduction.- 2. High-Frequency Financial Data and Statistical Problems.- 3. The SIML method.- 4. Asymptotic Properties.- 5. Simulation and Finite Sample Properties.- 6. Asymptotic Robustness.- 7. Two Dimension Applications.- 8. Concluding Remarks.- 9. References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09784431559283
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st ed. 2018
    • Anzahl Seiten 114
    • Herausgeber Springer-Verlag GmbH
    • Größe H234mm x B8mm x T153mm
    • Jahr 2018
    • EAN 9784431559283
    • Format Kartonierter Einband
    • ISBN 978-4-431-55928-3
    • Titel Separating Information Maximum Likelihood Method for High-Frequency Financial Data
    • Autor Naoto Kunitomo , Seisho Sato , Daisuke Kurisu
    • Untertitel SpringerBriefs in Statistics - JSS Research Series in Statistics
    • Gewicht 201g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470