Shrinkage Estimation for Mean and Covariance Matrices

CHF 80.35
Auf Lager
SKU
2MGVHF545OC
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book provides a self-contained introduction to shrinkage estimation for matrix-variate normal distribution models. More specifically, it presents recent techniques and results in estimation of mean and covariance matrices with a high-dimensional setting that implies singularity of the sample covariance matrix. Such high-dimensional models can be analyzed by using the same arguments as for low-dimensional models, thus yielding a unified approach to both high- and low-dimensional shrinkage estimations. The unified shrinkage approach not only integrates modern and classical shrinkage estimation, but is also required for further development of the field. Beginning with the notion of decision-theoretic estimation, this book explains matrix theory, group invariance, and other mathematical tools for finding better estimators. It also includes examples of shrinkage estimators for improving standard estimators, such as least squares, maximum likelihood, and minimum risk invariantestimators, and discusses the historical background and related topics in decision-theoretic estimation of parameter matrices. This book is useful for researchers and graduate students in various fields requiring data analysis skills as well as in mathematical statistics.



Integrates modern and classical shrinkage estimation and contributes to further developments in the field Provides a unified approach to low- and high-dimensional models with respect to the size of the mean matrix Presents recent results of high-dimensional generalization of decision-theoretic estimation of the covariance matrix

Autorentext
Hisayuki Tsukuma, Faculty of Medicine, Toho University
Tatsuya Kubokawa, Faculty of Economics, University of Tokyo


Inhalt
Preface.- Decision-theoretic approach to estimation.- Matrix theory.- Matrix-variate distributions.- Multivariate linear model and invariance.- Identities for evaluating risk.- Estimation of mean matrix.- Estimation of covariance matrix.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811515958
    • Sprache Englisch
    • Auflage 1st edition 2020
    • Größe H235mm x B155mm x T8mm
    • Jahr 2020
    • EAN 9789811515958
    • Format Kartonierter Einband
    • ISBN 9811515956
    • Veröffentlichung 17.04.2020
    • Titel Shrinkage Estimation for Mean and Covariance Matrices
    • Autor Tatsuya Kubokawa , Hisayuki Tsukuma
    • Untertitel SpringerBriefs in Statistics - JSS Research Series in Statistics
    • Gewicht 201g
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 124
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470