Sierpinski Carpet
CHF 49.20
Auf Lager
SKU
JNHFTGC8HTN
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025
Details
High Quality Content by WIKIPEDIA articles! The Sierpinski carpet is a plane fractal first described by Wac aw Sierpi ski in 1916. The carpet is a generalization of the Cantor set to two dimensions (another is Cantor dust). Sierpi ski demonstrated that this fractal is a universal curve, in that any possible one-dimensional graph, projected onto the two-dimensional plane, is homeomorphic to a subset of the Sierpinski carpet. For curves that cannot be drawn on a 2D surface without self-intersections, the corresponding universal curve is the Menger sponge, a higher-dimensional generalization. The technique can be applied to repetitive tiling arrangement; triangle, square, hexagon being the simplest. It would seem impossible to apply it to other than rep-tile arrangements.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131181429
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Genre Mathematik
- EAN 9786131181429
- Format Fachbuch
- Titel Sierpinski Carpet
- Herausgeber Betascript Publishing
- Anzahl Seiten 108
Bewertungen
Schreiben Sie eine Bewertung