Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sieve (Category Theory)
CHF 43.15
Auf Lager
SKU
COAVRFBLQ62
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026
Details
High Quality Content by WIKIPEDIA articles! In category theory, a branch of mathematics, a sieve is a way of choosing arrows with a common codomain. It is a categorical analogue of a collection of open subsets of a fixed open set in topology. In a Grothendieck topology, certain sieves become categorical analogues of open covers in topology. Let C be a category, and let c be an object of C. A sieve S on c is a subfunctor of Hom( , c), i.e., for all objects c of C, S(c ) Hom(c , c), and for all arrows f:c c , S(f) is the restriction of Hom(f, c), the pullback by f, to S(c ). Put another way, a sieve is a collection S of arrows with a common codomain which satisfies the functoriality condition, "If g:c c is an arrow in S, and if f:c c is any other arrow in C, then the pullback gf of g by f is in S." Consequently sieves are similar to right ideals in ring theory or filters in order theory. The most common operation on a sieve is pullback. Pulling back a sieve S on c by an arrow f:c c gives a new sieve f S on c . This new sieve consists of all the arrows in S which factor through c .
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131181580
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131181580
- Format Fachbuch
- Titel Sieve (Category Theory)
- Herausgeber Betascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung