Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Signal Extraction for Linear State-Space Models
Details
This monograph discusses the decomposition of a vector of time series, described by a linear state-space model, into trend, cyclical, seasonal, irregular and input-related components. The representation and signal-extraction methods employed provide unique advantages, notably the ability to decompose single or multiple time series, the lack of revisions as the sample increases or the independence of the method from specific model formulations. Besides a complete and self-contained presentation of this subject, this text emphasizes in the practical application of the methods described. To this end, each chapter includes several examples of the methods proposed and Appendix A provides a broad description of E4, a free MATLAB Toolbox for time series analysis that can be freely downloaded from www.ucm.es/info/icae/e4. An Appendix provides the source code and data references required to replicate all the practical examples.
Autorentext
Teaches Econometrics at Universidad Complutense de Madrid. He is engaged with his colleagues Jose Casals and Sonia Sotoca in a long-term project to apply state-space methods to standard econometric problems. An output of this project is E4, a free MATLAB Toolbox for time series analysis that can be freely downloaded from www.ucm.es/info/icae/e4
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783845402840
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2011
- EAN 9783845402840
- Format Kartonierter Einband
- ISBN 3845402849
- Veröffentlichung 21.07.2011
- Titel Signal Extraction for Linear State-Space Models
- Autor Miguel Jerez , Jose Casals , Sonia Sotoca
- Untertitel Including a free MATLAB Toolbox for Time Series Modeling and Decomposition
- Gewicht 185g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 112
- Genre Mathematik