Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Similarity-Based Pattern Analysis and Recognition
Details
This accessible book presents a coherent overview of non-Euclidean similarity learning, offering a range of perspectives on similarity-based pattern analysis and recognition methods from purely theoretical challenges to practical, real-world applications.
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a kernel tailoring approach and a strategy for learning similarities directly from training data; describes various methods for structure-preserving embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imagingapplications.
Provides a coherent overview of the emerging field of non-Euclidean similarity learning Presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications Includes coverage of both supervised and unsupervised learning paradigms, as well as generative and discriminative models Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Part I: Foundational Issues.- Non-Euclidean Dissimilarities.- SIMBAD.- Part II: Deriving Similarities for Non-vectorial Data.- On the Combination of Information Theoretic Kernels with Generative Embeddings.- Learning Similarities from Examples under the Evidence Accumulation Clustering Paradigm.- Part III: Embedding and Beyond.- Geometricity and Embedding.- Structure Preserving Embedding of Dissimilarity Data.- A Game-Theoretic Approach to Pairwise Clustering and Matching.- Part IV: Applications.- Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma.- Analysis of Brain Magnetic Resonance (MR) Scans for the Diagnosis of Mental Illness.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781447156277
- Auflage 2013
- Editor Marcello Pelillo
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H241mm x B160mm x T23mm
- Jahr 2013
- EAN 9781447156277
- Format Fester Einband
- ISBN 1447156277
- Veröffentlichung 12.12.2013
- Titel Similarity-Based Pattern Analysis and Recognition
- Untertitel Advances in Computer Vision and Pattern Recognition
- Gewicht 629g
- Herausgeber Springer London
- Anzahl Seiten 308
- Lesemotiv Verstehen