Similarity-Based Pattern Analysis and Recognition

CHF 131.95
Auf Lager
SKU
7V4PQGD38QO
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This accessible book presents a coherent overview of non-Euclidean similarity learning, offering a range of perspectives on similarity-based pattern analysis and recognition methods from purely theoretical challenges to practical, real-world applications.

This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a kernel tailoring approach and a strategy for learning similarities directly from training data; describes various methods for structure-preserving embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imagingapplications.


Provides a coherent overview of the emerging field of non-Euclidean similarity learning Presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications Includes coverage of both supervised and unsupervised learning paradigms, as well as generative and discriminative models Includes supplementary material: sn.pub/extras

Inhalt

Introduction.- Part I: Foundational Issues.- Non-Euclidean Dissimilarities.- SIMBAD.- Part II: Deriving Similarities for Non-vectorial Data.- On the Combination of Information Theoretic Kernels with Generative Embeddings.- Learning Similarities from Examples under the Evidence Accumulation Clustering Paradigm.- Part III: Embedding and Beyond.- Geometricity and Embedding.- Structure Preserving Embedding of Dissimilarity Data.- A Game-Theoretic Approach to Pairwise Clustering and Matching.- Part IV: Applications.- Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma.- Analysis of Brain Magnetic Resonance (MR) Scans for the Diagnosis of Mental Illness.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447156277
    • Auflage 2013
    • Editor Marcello Pelillo
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H241mm x B160mm x T23mm
    • Jahr 2013
    • EAN 9781447156277
    • Format Fester Einband
    • ISBN 1447156277
    • Veröffentlichung 12.12.2013
    • Titel Similarity-Based Pattern Analysis and Recognition
    • Untertitel Advances in Computer Vision and Pattern Recognition
    • Gewicht 629g
    • Herausgeber Springer London
    • Anzahl Seiten 308
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470