Singular Measure

CHF 49.55
Auf Lager
SKU
QJ85VPPMEPG
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! In mathematics, two positive (or signed or complex) measures and defined on a measurable space ( , ) are called singular if there exist two disjoint sets A and B in whose union is such that is zero on all measurable subsets of B while is zero on all measurable subsets of A. This is denoted by mu perp nu. A refined form of Lebesgue's decomposition theorem decomposes a singular measure into a singular continuous measure and a discrete measure. See below for examples. As a particular case, a measure defined on the Euclidean space Rn is called singular, if it is singular in respect to the Lebesgue measure on this space. For example, the Dirac delta function is a singular measure.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131189708
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131189708
    • Format Fachbuch
    • Titel Singular Measure
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 104
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470