Singular Quadratic Forms in Perturbation Theory

CHF 125.15
Auf Lager
SKU
RPFCLVJF1BS
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025

Details

The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturba tion terms with singular properties. Typical examples of such expressions are Schrodin ger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P(

Klappentext

This monograph is devoted to the systematic presentation of the method of singular quadratic forms in the perturbation theory of self-adjoint operators. br/ The concept of a singular (nowhere closable) quadratic form, a key notion of the present volume, is treated from different points of view such as definition, properties, relations with regular (closable) quadratic forms, operator representation, classification in the scale of Hilbert spaces and especially as an object carrying a singular perturbation for Hamiltonians. The main idea is to interpret singular quadratic form in the role of an abstract boundary condition for self-adjoint extension. Various aspects of the singularity principle are investigated, such as the construction of singularly perturbed operators, higher powers of perturbed operators, the transition to a new orthogonally extended state space, as well as approximation and regularization. Furthermore, applications dealing with singular Wick monomials in the Fock space and mathematical scattering theory are included. br/ emAudience:/em This book will be of interest to students and researchers whose work involves functional analysis, operator theory and quantum field theory.


Inhalt

  1. Quadratic Forms and Linear Operators.- 1. Preliminary Facts about Quadratic Forms.- 2. Closed and Closable Quadratic Forms.- 3. Operator Representations of Quadratic Forms.- 4. Quadratic Forms in the Theory of Self-Adjoint Extensions of Symmetric Operators.- 2. Singular Quadratic Forms.- 5. Definition of Singular Quadratic Forms.- 6. Properties of Singular Quadratic Forms.- 7. Operator Representation of Singular Quadratic Forms.- 8. Singular Quadratic Forms in the A-Scale of Hilbert Spaces.- 9. Regularization.- 3. Singular Perturbations of Self-Adjoint Operators.- 10. Rank-One Singular Perturbations.- 11. Singular Perturbations of Finite Rank.- 12. Method of Self-Adjoint Extensions.- 13. Powers of Singularly Perturbed Operators.- 14. Method of Orthogonal Extensions.- 15. Approximations.- 4. Applications to Quantum Field Theory.- 16. Singular Properties of Wick Monomials.- 17. Orthogonally Extended Fock Space.- 18. Scattering and Spectral Problems.- References.- Notation.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789401059527
    • Sprache Englisch
    • Größe H240mm x B160mm x T18mm
    • Jahr 2012
    • EAN 9789401059527
    • Format Kartonierter Einband
    • ISBN 9401059527
    • Veröffentlichung 10.10.2012
    • Titel Singular Quadratic Forms in Perturbation Theory
    • Autor Volodymyr Koshmanenko
    • Untertitel Mathematics and Its Applications 474
    • Gewicht 520g
    • Herausgeber Springer
    • Anzahl Seiten 324
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.